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Abstract

In this work, we investigate the impact of the COVID-19 pandemic on sovereign bond yields.
We consider the temporal changes from financial correlations using network filtering methods.
These methods consider a subset of links within the correlation matrix, which gives rise to a
network structure. We use sovereign bond yield data from 17 European countries between the
2010 and 2020 period. We find the mean correlation to decrease across all filtering methods
during the COVID-19 period. We also observe a distinctive trend between filtering methods
under multiple network centrality measures. We then relate the significance of economic and
health variables towards filtered networks within the COVID-19 period. Under an exponential
random graph model, we are able to identify key relations between economic groups across
different filtering methods.
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1 Introduction

The novel coronavirus disease 2019 (COVID-19) epidemic caused by SARS-CoV-2 began in China
in December 2019 and rapidly spread around the world. The confirmed cases increased in different
cities of China, Japan, and South Korea in a few days of early January 2020, but spread globally with
new cases in Iran, Spain, and Italy within the middle of February. We focus on sovereign bonds
during the COVID-19 period to highlight the extent to which the pandemic has influenced the
financial markets. A sovereign bond is a bond that is issued by sovereign entities or administrative
regions. The yield of these bonds is the interest rate which is paid to the buyer of the bond by
the issuer. Each issued sovereign bond has an associated maturity date and is considered risk-free.
However, the yields of sovereign bonds can depend highly on factors such as the inflation, political
stability, and the debt of the issuing country.
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In the last few years, bond yields across the Euro-zone were decreasing under a range of European
Central Bank (ECB) interventions, and overall remained stable compared with the German Bund,
a benchmark used for European sovereign bonds. These movements were disrupted during the
COVID-19 pandemic, which has affected the future trajectory of bond yields from highly impacted
countries, e.g., Spain and Italy. However, in the last months, the European central banks intervened
in financial and monetary markets to consolidate stability through an adequate supply of liquidity
countering the possible margin calls and the risks of different markets and payment systems. These
interventions played a specific role in sovereign bonds because, on the one side, supported the
stability of financial markets and, on the other side, supported the governments’ financial stability
and developed a global reference interest rate scheme. Understanding how correlations now differ
and similarities observed in previous financial events are important in dealing with the future
economic effects of COVID-19.

We consider an analysis of sovereign bonds by using network filtering methods, which is part of
a growing literature within the area of econophysics [35, 51, 36, 34, 20]. The advantage in using fil-
tering methods is the extraction of a network type structure from the financial correlations between
sovereign bonds. Hence, the correlation-based networks and hierarchical clustering methodologies
allow us to understand the nature of financial markets and some sovereign bond features. It is not
clear which approach should be used in analyzing sovereign bond yields, and so within this paper,
we implement various filtering methods to the sovereign bond yield data and compare the resulting
structure of different networks. Through this analysis, we able to evaluate the impact which the
topological structure of filtered networks has on the economic and health relations between nodes.

Our results show that the mean correlation peaks in October 2019 and then decreases during
the 2020 period, when COVID-19 is most active in Europe. These dynamics are reflected across
all network filtering methods and represent the wide impact of COVID-19 on the spectrum of cor-
relations, compared to previous financial events. We also find a clustering of Euro-area countries
and a disintegration with non-Euro countries during the COVID-19 period. These network struc-
tures reflect the financial state of sovereign bonds observed within previous financial events but are
also related by exogenous variables, e.g., death rates of countries, which we can analyze under an
exponential random graph model.

Previous studies have used different methods to analyze historic correlations as random matrix
theory to identify the distribution of eigenvalues concerning financial correlations [33, 45, 29], the
partial transfer entropy to quantify the indirect influence that stock indices have on one another [28],
the approaches from information theory in exploring the uncertainty within the financial system
[23, 13], community structure analysis [57], multilayer network methods [1, 7, 53, 30, 21, 46],
and filtering methods. Several authors have used network filtering methods to explain financial
structures [37, 43], hierarchy and networks in financial markets [55], relations between financial
markets and real economy [40], volatility [56], interest rates [39], stock markets [26, 58, 59, 2], future
markets [8] or topological dynamics [52] to list a few. Also, the comparison of filtering methods
to market data has been used for financial instruments. Birch, et al [11] consider a comparison
of filtering methods of the DAX30 stocks. Musmeci, et al [41] propose a multiplex visual network
approach and consider data of multiple stock indexes. Kukreti, et al [32] use the S&P500 market
data and incorporate entropy measures with a range of network filtering methods. Aste, et al [5]
apply a comparison of network filtering methods on the US equity market data and assess the
dynamics using network measures, Schwendner, et al [49] applied a correlation influence approach
and constructed noise-filtered influence networks to understand the collective yield dynamics of the
Euro area sovereign bonds.

To evaluate the European sovereign bonds based on filtering methods, this work is organized as
follows. In Section 2, we describe the network filtering methods and present the data sets with some
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preliminary empirical analyses. We apply in Section 3 the filtering methods to sovereign bond yields
and analyze the trend of financial correlations over the last decade, and consider aspects of the
network topology. We construct plots in Section 4 representing the COVID-19 period and consider
an analysis using the exponential random graph model for each filtering method. In Section 5, we
discuss the results and future directions.

2 Materials and methods

We introduce a range of network filtering methods and consider a framework as in [37] for sovereign
bond yields. We define n ∈ N to be the number of sovereign bonds and bond yields Yi(t) of the
ith sovereign bond at time-t, where i ∈ {1, ..., n}. The correlation coefficients rij(t) ∈ [−1, 1] are
defined using Pearson correlation as

rij =
〈YiYj〉 − 〈Yi〉〈Yj〉√(

〈Y 2
i 〉 − 〈Yi〉2

) (
〈Y 2

j 〉 − 〈Yj〉2
) , (1)

with 〈·〉 denoting the average of yield values. The classical approach in using the Pearson corre-
lation is well established, but it does not take into account the increases in correlation from market
volatility. We can account for these changes by considering the conditional Pearson correlation
approach as in [18]. We define an adjustment factor βij(t) ∈ [0,∞) and the conditional correlation
r∗ij at time-t as follows:

r∗ij = rij

√
1 + βij

1 + βijr2ij
, where βij =

σhij

σlij
− 1. (2)

This adjustment factor is represented by the relative difference between two subgroups of high
covariance σhij(t) ∈ [0,∞) and low covariance σlij(t) ∈ [0,∞) of bond yields at time-t. As the relative
difference in covariance increases, this increases the adjustment factor βij(t) and the magnitude of
the conditional Pearson correlation. This adjustment preserves the symmetry of correlation values
between sovereign bonds i and j, while taking into account market conditions. We form both
subgroups by equally dividing yield values, where the high variance σhij group consists of the 25%

lowest and highest yield values, with the remaining values allocated within the low variance σlij
group. This allocation is applied individually to each sovereign bond in which the covariance is
computed.

Under the conditional Pearson correlation, we establish the notion of distance dij ∈ [0, 2]. We
consider the values of the entries r∗ij on the conditional correlation matrix R∗ ∈ [−1, 1]n×n, with

dij =
√

2(1− r∗ij). A distance of dij = 0 represents perfectly positive correlations and dij = 2

represents bonds with negative correlations. The network filtering methods are then applied to the
distance matrix D ∈ [0, 2]n×n, where a subset of links (or edges) are chosen under each filtering
method. The set of edges is indicated by {(i, j) ∈ E(t) : nodes i and j are connected} at time-t,
defined for each filtering method. We define the time frames of financial correlations as X for the
set of observations, with n different columns and T rows. From the set of observations X, we
consider windows of length 120, which is equal to six months of data values. We then displace
δ windows by 10 data points, which is equal to two weeks of data values, and discard previous
observations until all data points are used. By displacing the data in this way, we can examine a
time series trend between each window X.
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2.1 Network filtering methods

We consider multiple network’s filtering methods to analyze the dynamics from multiple perspec-
tives. We introduce the commonly used minimum spanning tree (MST) method, which has been
used within currency markets [27], stocks markets [48, 50] and sovereign bond yields [15]. The
MST from Table 1 considers the smallest edges and prioritizes connections of high correlation to
form a connected and undirected tree network. These networks can be constructed from a greedy
type algorithm e.g. Kruskal’s and Prim’s algorithm and satisfies the properties of subdominant
ultrametric distance e.g. dij ≤ max{dik, dkj} ∀i, j, k ∈ {1, ..., n}.

This approach is used as it establishes three key properties within a subset of correlations. We
argue these properties are relevant within filtering methods but can also be individually constrained
when applied in conjunction (as within the MST) for topological and economic reasons. By consid-
ering four methods, we can analyze the influence of each feature on the properties of the network:

• Connectivity: Under the MST, all nodes are connected within the network. As there has
been a broad impact from COVID-19, many sovereign bonds have experienced a comovement
in yield trends under market conditions. This criterion in which the network structure is
connected also excludes some highly positive links and decreases the information between
positively correlated sovereign bonds. Therefore, we consider the Asset Graph (AG), which
includes all positive correlations of interest while maintaining the network density.

• Sparsity: The key motivation in filtering methods is the decrease in links, in which we can
establish network properties of interest, e.g., network centrality. As observed in the 2012 Euro
debt crisis, specific sovereign bonds are large contributors to the spillover effects observed in
other bond yield trends. The fixed number of links within the MST can be also argued
to oversimplify the network and reduce connectivity. Hence, we consider the Triangulated
Maximal Filtering Graph (TMFG), which establishes a planar graph and increases the total
number of links compared with the MST.

• Positivity: From an economic perspective, positive correlations are relevant in identifying
the trends in different financial instruments and periods of high volatility. However, focusing
on this subset of correlations may exclude sovereign bonds that act differently, i.e., although
the majority of bond yields increase within the COVID-19 period, several bond yields like
Germany and Switzerland decrease. To account for these dynamics, we consider a Maximum
Spanning Tree (MaST), which prioritizes negative correlations within the network.

We provide further descriptions of the methods described above. An AG considers positive
correlations between nodes of a given threshold. All n − 1 highest correlations are considered in
an AG, allowing for the formation of cliques not observed within a MST network. The use of AG
has been considered in Onnela, et al [44], which identifies clustering within stock market data. As
the method only considers n − 1 links, some nodes within the AG may not be connected for the
given threshold. Therefore, the connection of unconnected nodes is unknown, relative to connected
components.

The TMFG constructs a network of 3(n − 2) fixed edges for n nodes, similar to the planar
maximal filtered graph (PMFG) [54], which has been used to analyze US stock trends [41]. The
algorithm initially chooses a clique of 4 nodes, where edges are then added sequentially, in order
to optimize the objective function e.g., the total edge weight of the network, until all nodes are
connected. This approach is non-greedy in choosing edges and incorporates the formation of cliques
within the network structure. A TMFG is also an approximate solution to the weighted planar
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Network Filtering
Methods

Number of
links (edges)

Reference Description

Minimum Spanning
Tree (MST)

n− 1 [31]
A connected and undirected net-
work for n nodes which minimizes
the total edge weight.

Maximum Spanning
Tree (MaST)

n− 1 [47]
A connected and undirected net-
work for n nodes which maximizes
the total edge weight.

Asset Graph (AG) n− 1 [42]
Choose the smallest n−1 edges from
the distance matrix.

Triangulated
Maximal Filtering
Graph (TMFG)

3(n− 2) [38]
A planar filtered graph under an as-
signed objective function.

Table 1: List of network filtering methods.

maximal graph problem, and is computationally faster than the PMFG. The resulting network
includes more information about the correlation matrix compared with spanning tree approaches.

The MaST constructs a connected and undirected tree network with n− 1 edges in maximizing
the total edge weight. Analyses involving MaST have been used as comparisons to results observed
within MST approaches [16, 22]. An MaST approach is informative for connections of perfectly
anti-correlation between nodes, which are not displayed within the MST.

2.2 Sovereign bond data

The European sovereign debt has evolved in the last ten years, with some situations affecting the
convergence between bond yields. After the 2008 crisis, European countries experienced a financial
stress situation starting in 2010 that affected bond yields. Thus, the investors saw an excessive
amount of sovereign debt and demanded higher interest rates in low economic growth situations
and high fiscal deficit levels. During 2010-2012, several European countries suffered downgrades in
their bond ratings to junk status that affected investors’ trust and fears of sovereign risk contagion
resulting, in some cases, a differential of over 1,000 basis points in several sovereign bonds. After the
introduction of austerity measures in GIIPS (Greece, Ireland, Italy, Portugal, and Spain) countries,
the bond markets returned to normality in 2015.

The 2012 European debt crisis revealed spillover effects between different sovereign bonds, which
have been studied using various time series models, e.g., VAR [12, 4] and GARCH [6]. The results
showed that Portugal, Greece, and Ireland have a greater domestic effect, with Italy and Spain
contributing to the spillover effects in other European bond markets. A core group of ABFN
(Austria, Belgium, France, and the Netherlands) countries had a lower contribution to the spillover
effects, with some of the least impacted countries residing outside of the Eurozone.

During the sovereign debt crisis, public indebtedness increased after Greece had to correct the
public finance falsified data, and other countries created schemes to solve their public finance
problems, especially, bank bailouts. In consequence, the average debt-to-GDP ratio across the
Euro-zone countries rose from 72% in 2006 to 119.5% in 2014, as well as the increase in sovereign
credit risk [3, 10].

After the Fiscal Compact Treaty went into effect at the start of 2013, the yield of sovereign bonds
started a correction. This treaty defined that fiscal principles had to be embedded in the national
legislation of each country that signed the treaty. Although some investors and institutions pushed
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Country Min Max Mean Variance Skewness Kurtosis AC(1) AC2(1)

Austria -0.47 3.90 1.30 1.45 0.55 2.11 0.05 0.14
Belgium -0.43 5.83 1.58 2.01 0.61 2.13 0.17 0.41
Czech 0.24 4.55 1.88 1.32 0.61 2.33 -0.07 0.11
France -0.44 3.79 1.40 1.37 0.40 1.91 0.06 0.18

Germany -0.85 3.50 0.95 1.13 0.57 2.42 -0.01 0.21
Greece 0.56 39.85 9.16 51.02 1.74 6.31 0.07 0.01

Hungary 1.55 10.73 4.67 4.62 0.55 1.90 0.01 0.22
Iceland 2.19 8.15 5.72 1.73 -0.88 3.14 0.04 0.17
Ireland -0.32 14.45 2.82 9.17 1.23 3.65 -0.36 0.50
Italy 0.48 7.31 2.96 2.40 0.55 2.28 0.07 0.08

Netherlands -0.64 3.78 1.16 1.28 0.50 2.16 0.01 0.20
Poland 1.15 6.40 3.68 1.87 0.34 2.23 0.05 0.16

Portugal -0.05 17.36 4.30 11.94 1.10 3.54 -0.28 0.32
Romania 2.56 10.80 4.91 2.20 0.73 2.60 -0.37 0.30

Spain -0.01 7.56 2.70 3.60 0.52 1.91 0.13 0.14
Switzerland -1.11 2.14 0.33 0.57 0.64 2.42 0.02 0.08

UK 0.07 4.28 1.81 0.91 0.42 2.61 -0.04 0.17

Table 2: Summary statistics of the 10Y sovereign bond yield data of 17 European countries from
January 2010 to December 2020. AC(1) represents the first-order autocorrelation of the difference
between yield values and AC2(1) represents the first-order autocorrelation of the squared series.

for financial and monetary authorities to introduce an additional decision, that permitted them
to include sovereign bonds in their portfolios. The rate interest policy of the European Central
Bank helped to consolidate the trust in this kind of asset; the bonds confirmed their adjustment
especially Germany, France, Spain, during the fourth quarter of 2013, while countries like Greece
and Italy started in 2014 with variations of over 500 basis points during the following months. By
2015, all European bonds increased their yields as a result of an adjustment of the market rally of
2014.

We analyze the sovereign bond yield data for the following countries Austria (AUT), Belgium
(BEL), Czech Republic (CZE), France (FRA), Germany (DEU), Greece (GRC), Hungary (HUN),
Iceland (ISL), Ireland (IRL), Italy (ITA), Netherlands (NLD), Poland (POL), Portugal (PRT),
Romania (ROU), Spain (ESP), Switzerland (CHE), and the UK (GBR). We consider sovereign
bond yields with a 10 year maturity between January 2010 and Dec 2020. This data is taken from
the financial news platform Investing [25]. In total, there are 2,615 data values for each country
with an average of 238 data points within 1 year.

Table 2 provides summary statistics of the 10Y bond yield data. The data shows that the lowest
recorded yields for many countries was within 2020, during the COVID-19 period and highest
in 2011, before the 2012 European debt crisis. The lowest yield values are with Germany and
Switzerland, which both record yield values lower than −0.80. In contrast, Greece has the highest
yield value of 39.85 and a variance of 51.02. The left skewed yield distributions (except for Iceland)
represent an average decrease in yield values and are high for GIIPS countries compared with the
UK, France, and Germany, with flattening yield trends. If we examine the autocorrelation, we find
this to be small overall but high for some countries e.g., Belgium, Ireland and Portugal within the
squared series.
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Figure 1: The plots represent the mean and variance of the conditional Pearson correlation matrix.
The length of windows is 120 with a displacement value of δ = 10 days.

3 Network measures

We compute the correlation matrix for each window X with a displacement of δ between windows,
and consider the mean and variance for the correlation matrix. We define the mean correlation r(t)
given the conditional correlation values r∗ij for n sovereign bonds

r(t) =
2

n(n− 1)

∑
i<j

r∗ij(t), (3)

and the variance of correlations u(t) at time-t

u(t) =
2

n(n− 1)

∑
i<j

(r∗ij(t)− r(t))2. (4)

From Figure 1, we find that the mean correlation r(t) is highest at 0.99 in Oct 2019. This
suggests that a COVID-19 impact was a continuation on the decrease of the mean correlation, and
throughout the punitive lock down measures introduced by the majority of European countries in
Feb-Mar 2020. The decreases in mean correlation are observed within the 2012 period during the
European debt crisis, in which several European countries received EU-IMF bailouts to cope with
government debt. Within 2016, there was a combination of political uncertainty which followed
from the UK and the increased debt accumulation by Italian banks. The variance u(t) also follows
a trend similar to the mean correlation, with the smallest variance of 4.48× 10−5 in October 2019.
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Figure 2: The plots represent the normalized and variance of the network length for MST, TMFG,
MaST, and AG networks, with windows of length 120 and δ = 10 days.

Within 2020, the variance increases between sovereign bonds and reflects the differences between
the correlations of low and high yield.

3.1 Network length

We consider the normalized network length L(t), which is introduced in Onnela, et al [42] as the
normalized tree length. We define the measure as the normalized network length, as this measure is
considered for AG and TMFG non-tree networks. The network length is a measure of the mean link
weights on the subset of links E(t), which are present within the filtered network on the distance
matrix at time-t

L(t) =
1

#{(i, j) ∈ E(t)}
∑

(i,j)∈E(t)

dij(t), (5)

with the variance V (t) defined on network links

V (t) =
1

#{(i, j) ∈ E(t)}
∑

(i,j)∈E(t)

(dij(t)− L(t))2. (6)

The plots in Figure 2 represent the mean and variance of the network length. As each filtering
method considers a subset of weighted links, the normalized length L(t) is monotonic between
all methods and decreases with the increased proportion of positively correlated links within the
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Figure 3: The plots represent the degree centrality and mean occupation layer for MST, TMFG,
MaST and AG networks, with windows of length 120 and δ = 10 days.

network. We highlight movements in the normalized network length during the COVID-19 period,
which is reflected across all filtering methods. This movement is also observed within 2016, but
only towards a subset of correlations within the MaST and TMFG compared with the MST and
AG. The relative difference between the normalized network lengths is least evident in periods of
low variance; this is observed in the 2019-2020 period, where the difference between all methods
decreases.

We find the variance is highest within the TMFG and lowest with the AG approach. Compared
with the mean and variance of the correlation values in Figure 1, the difference between values within
the equivalent network measures is overall higher, particularly within the MaST. There appears to
be an overall reciprocal relation between the variance trends of spanning-tree approaches, where
both values are small for some periods. When we consider the variance of the AG, the concentration
of links, and the adjustment in the conditional correlation results in a flattened trend.

3.2 Network centrality

We define the degree centrality for the node of maximum degree C(t) at time-t. This measure
considers the number of direct links

C(t) = max
i∈{1,...,n}

n∑
j∈E(t)

1(dij > 0). (7)
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The mean occupation layer η(t) (MOL) introduced in Onnela, et al [42] is a measure of the
centrality of the network, relative to the central node υ(t). We define levi(t) as the level of the node,
which is the distance of the node relative to υ(t), where the central node and nodes unconnected
relative to the central node have a level value of 0,

η(t) =
1

n

n∑
i=1

levi(υ(t)). (8)

We use the betweenness centrality to define the central node υ(t) for the MOL. Introduced in
Freeman [19], the betweenness B(t) considers the number of shortest paths sij(k) between i and j
which pass through the node k, relative to the total number of shortest paths sij between i and j,
where i 6= j 6= k

Bk(t) =
∑
i 6=k

∑
j 6=k,j 6=i

sij(k)

sij
. (9)

Within the MST, the majority of degree centrality ranges between 3 to 5, but can be as high
as 9 for some periods. The trend within the MST remains stable, where the central node under
degree centrality is associated with multiple sovereign bonds, e.g., Netherlands 11%, Portugal 10%,
and Italy 10% across all periods. The MaST has the highest variation, with a centralized network
structure in some periods, e.g., C(t) of 16, forming a star-shaped network structure. This is usually
associated with Greece 27%, Iceland 25%, and Romania 18%, which are identified as the central
node 70% of the time. The degree centrality on average is naturally highest with the TMFG,
under a higher network density, where the central nodes are identified as Iceland and Romania,
similar to the MaST. The AG identifies the Netherlands and France within the degree centrality,
under a higher proportion of 30% and 13% compared with the MST. Within Figure 3, the MOL
on average is smallest for the AG, because of the 0 level values from unconnected nodes, in which
an unconnected node is present within all considered windows. We find that all nodes within the
TMFG have a maximum path length of 3 between any two nodes, across all periods. Between the
MST and MaST, the MOL is higher within the MaST, where the degree centrality of nodes within
the network is higher.

4 COVID-19 networks

We analyze the temporal changes of sovereign bond yields between Jan 2020 and Dec 2020. This
interval establishes a period in which COVID-19 was highly active across multiple European coun-
tries. We first construct networks under each of the filtering methods and relate the network
topology to economic trends. Then, we implement an exponential random graph model (ERGM)
to verify the significance of these explanatory variables within each constructed network. We con-
sider analysis as in [14], in which they use an ERGM to analyze the interconnectedness of financial
institutions across Europe under different node variables.

4.1 Network plots

Under the MST for the COVID-19 period, we find France has the highest degree centrality of 3.
The network also exhibits clusters between a subset of southern European countries, as observed
within the connected component of Italy, Portugal and Spain. Within the network, there is a con-
nection between all ABFN countries, but countries within this group also facilitate the connecting
component within GIIPS countries, where Belgium is connected with Greek sovereign bonds. The
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UK and Eastern European countries remain on the periphery, with ABFN countries occupying the
core of the network structure. For the MaST in Figure 4, there exists a high degree centrality
for Icelandic bond yields. This contrasts to the observed regional hub structure within the MST,
where the degree centrality is similar between all nodes. The UK remains within the periphery of
the MaST structure when considering anti-correlations, and shows UK bond yields fluctuate less
with movements of other European bonds, compared with previous years. This is also observed for
sovereign bonds for other countries with non-Euro currencies e.g., Czech Republic and Hungary.

AUT

BEL

CZE

FRA

DEU

GRC

HUN

ISL
IRL

ITA

NLD

POL

PRT

ROU
ESP

CHE

GBR

AUT
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CZE

FRA

DEU

GRC

HUN

ISL

IRL

ITA

NLD

POL

PRT

ROU

ESP

CHE

GBR

Figure 4: The plots represent the minimum spanning tree (left) and maximum spanning tree (right)
for the Jan 2020 - Dec 2020 period.

We find nodes within the TMFG to have the highest degree in Iceland at 13 and Czech Republic at
11. This resembles the links within the MaST, where 75% of links are present within both networks.
There is also the associated degree centrality of the MaST, which is observed within the TMFG
connected nodes. Under the TMFG, nodes have a higher degree connectivity when considering an
increased number of links. This is the case for the UK, which has a degree value of 10 compared
with other filtered networks. We find the AG exhibits one large component which consists of
ABFN and GIIPS countries, where the majority of remaining nodes are non-Euro countries and
are unconnected within the network. By solely considering the most positive correlations, we
include the formation of cliques between countries, which is prevalent within the western European
group of 6 nodes. This level of disintegration which is observed during COVID-19 is supported by
previous studies of the 2012 Euro zone debt crisis [9].

Under various constraints, there is a commonality between sovereign bonds across network fil-
tering methods. We find for positive correlations, that Euro-zone countries have a high degree
centrality, with non-Euro countries are predominately located within the periphery of the network.
This is distinctive within the AG, where cliques are only formed between GIIPS and ABFN coun-
tries. The anti-correlations within the MaST inform the trends between non-Euro countries and
the remaining Euro-area countries. This structure is supported within the TMFG, with the planar
graph presenting similarities with the MaST on the degree centrality of nodes i.e., particularly for
Iceland.
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Figure 5: The plots represent the triangulated filtering maximal graph (left) and asset graph (right)
for the Jan 2020 - Dec 2020 period.

4.2 Exponential Random Graph Model for COVID-19 networks

We analyze the filtered networks as in Section 4 under an ERGM. In this approach, we consider a
family of random unweighted networks W on the observed network w. We define the function of
network statistics z(w) and can computationally use the Maximum Likelihood Estimator (MLE)
to consider this space of networks. We define the general model for p number of parameters with
coefficient values θ as follows:

P(W = w) =
exp

{
θT z(w)

}
κ(θ)

, (10)

log
(
exp{θT z(w)}

)
= θ1z1(w) + θ2z2(w) + . . .+ θpzp(w) (11)

and κ(θ) as the normalizing constant. Although these computations can be expensive for a large
number of nodes n, we can address these issues by using Markov Chain Monte Carlo (MCMC)
methods. We analyze the local interactions between nodes and generate 10, 000 random networks
for each filtering method.

For the ERGM, we define the ”intercept” of the model as the number of links observed within
each filtered network. We then consider node level variables under a discrete classification for
different economic groups. If the node is within the economic group, we assign a value of ”1”,
otherwise the node has a ”0” value. We also incorporate continuous variables which is represented
by economic and health data for all nodes. The data is provided by the International Monetary
Fund (IMF) [24] and the European Centre for Disease Prevention and Control (ECDC) [17] within
the 2020 year. As we consider the coefficient values for different parameters, we further discuss
the global model adequacy and fit under the ERGM. We consider the Akaike information criterion
(AIC) and Bayesian information criterion (BIC) for the model adequacy, which are measures of
the goodness of fit compared with the number of parameters used. We then use the log-likelihood
value LL(θ), and consider the relative difference between the log-likelihood of the ERGM and null
model as a measure of the model fit.

Within Table 3, we define two economic groups of GIIPS and ABFN countries. All of these
countries have adopted the Euro and represent the core of connected nodes within the different
filtering methods. We use the country debt relative to the GDP, inflation rate, and account balance
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Country GIIPS ABFN Euro COVID-19 Debt Inflation Account
Deaths (%) to GDP Rate Balance

Austria X X 0.07 84.30 1.80 2.50
Belgium X X 0.17 117.10 1.20 -0.80
Czech 0.11 41.40 2.40 -0.50
France X X 0.10 118.60 0.60 -1.80

Germany X 0.04 72.20 1.10 6.80
Greece X X 0.05 200.50 0.70 -4.50

Hungary 0.10 75.90 3.40 -0.90
Iceland 0.01 52.50 2.80 0.20
Ireland X X 0.05 61.30 0.60 5.50
Italy X X 0.12 158.30 0.60 3.00

Netherlands X X 0.07 61.10 1.50 9.00
Poland 0.08 60.20 2.30 1.80

Portugal X X 0.07 130.00 1.10 -3.50
Romania 0.08 49.60 2.50 -4.50

Spain X X 0.11 121.30 0.80 0.90
Switzerland 0.08 48.50 0.00 9.00

UK 0.11 111.50 1.20 -3.80

Table 3: The following table represents health and economic attributes for countries within the
ERGM. The debt is defined as the gross amount relative to the GDP, the inflation rate is recorded for
the average consumer prices and the current account balance is the volume of recorded transactions
relative to the countries GDP within 2020. We consider the total number of COVID-19 deaths which
occurred in 2020 relative to the population size of each country.

for 2020 as known economic indicators within the ERGM. As a health indicator of COVID-19, we
consider the total number of COVID-19 deaths relative to the size of the country population
recorded within the 2020 year. If we compare the relative number of COVID-19 deaths with the
debt of countries within Table 3, we find several countries have both high levels of COVID-19
deaths and debt to GDP, e.g., Belgium, Italy, and the UK. For other economic indicators, we find
an overall negative relationship between inflation and debt, however, some countries, i.e., both
Switzerland and Ireland have low inflation and debt value. The account balance of countries is
highest with the Netherlands and Switzerland, with Greece and Romania having the most negative
values.

We find the AG to have the highest model fit under the ERGM and the MST with the lowest
fit (see Table 4). We observe that the GIIPS and ABFN coefficient values are high within the
AG, which mainly describe the large component of Euro countries. Under the MST, nodes within
the Euro establish links with other Euro countries because of positive correlations and non-Euro
countries to satisfy the topological constraints. As the interpreted co-movement is concentrated
within Euro countries, the MST removes the representative cliques between nodes, which decreases
the coefficient values of GIIPS and ABFN.

The coefficient of COVID-19 deaths is highly significant within the MaST. Because of the cen-
tralized structure around Iceland in which COVID-19 deaths for Iceland are low compared with
all other nodes (the death rate of the next lowest value is four times higher than Iceland). As
there is a centralized structure when considering negative correlations, we find compatibility of
the topological requirement with the ERGM, which is not observed under positives correlations.
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Panel A Parameters MST TMFG MaST AG

Edges -2.36 0.82 0.43 -36.14
GIIPS 0.60 -0.23 1.22 20.59
ABFN 0.70 -0.19 1.76 22.17
Euro -0.27 -1.75∗ -3.50∗ -0.62
COVID-19 Deaths 1.77 -4.93 -39.20∗∗∗ -6.95
Debt to GDP -0.00 0.01 0.02 -0.01
Inflation 0.01 0.12 0.71 -1.14
Account Balance -0.04 0.02 0.11 0.00

Panel B Diagnostics

Goodness of Fit Test: AIC 112.92 155.20 69.38 58.41
Goodness of Fit Test: BIC 136.22 178.50 92.69 81.71
Log Likelihood (LLM (θ)) -48.46 -69.60 -26.69 -21.21
Log Likelihood (LL0(θ)) -49.26 -86.33 -49.26 -49.26
Model Fit 1.62% 19.38% 45.82% 56.94%

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 4: The table represents filtered networks under the ERGM. The goodness of fit is defined
under the AIC and BIC, a smaller value represents a higher model adequacy. We define the model
fit as 100 ×

[
1−

(
LLM (θ)/LL0(θ)

)]
, where LLM (θ) is the log-likelihood of ERGM and LL0(θ) is

the log-likelihood of the null model. The LLM (θ) includes the link and node level parameters,
where the null model LL0(θ) only includes the link parameter.

When the density of the network increases within the TMFG, the network structure decreases the
model fit and the model adequacy of the ERGM. We still observe a coefficient value where there is
a formation of links between non-Euro countries, i.e., Czech Republic and Iceland with Euro area
countries.

If we consider economic indicators, there is a smaller coefficient value across all parameters
compared with COVID-19 deaths. The inflation rate under the MaST is positive between two
nodes and represents the links with other countries with high inflation rates. This contrasts with the
coefficient value within the AG, which has a negative coefficient between locally connected nodes.
Overall, we find altering any one of the conditions within the MST increases the model fitness to
the ERGM. This also results in a decrease of the model adequacy in some networks compared with
the MST. For negative correlations, we find higher compatibility between the topological structure
and model fit under the MaST compared with the MST for positive correlations. Through these
approaches, we can capture the core interactions observed between Euro countries and their links
with non-Euro countries. We can also factor in economic and health node variables, in which we
find COVID-19 deaths to be highly significant.

5 Conclusion

As a response to the COVID-19 pandemic, most countries implemented various socio-economic
policies and business restrictions almost simultaneously. An immediate consequence was an increase
in yield rates for these nations. The resulting upward co-movement and upward movements in
other yield rates explain the decrease in the mean correlation in bond dynamics, coinciding with
the pandemic outbreak. Thus, understanding the dynamics of financial instruments in the Euro
area is relevant to assess the increased economic strain from events seen in the last decade.
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In this paper, we consider the movements of European sovereign bond yields for network filtering
methods, where we focus on the COVID-19 period. We find that the impact of COVID-19 decreased
the mean correlation, which was reflected within the normalized network length of all filtering
methods. The network topology remained consistent with previous years, in which the trends
between approaches were distinctive. The degree centrality was highest for GIIPS and ABFN
countries when considering positive correlations and non-Euro countries within negatively correlated
type networks. We identified the network structures of filtering methods within the COVID-19
period, which showed one large component consisting of GIIPS and ABFN countries for positive
correlations. We were able to verify several of these relationships under an ERGM, in which we
find COVID-19 deaths to be significant within negatively correlated networks.

However, depending on the terms of each bond, the European bond market reacted positively
after central banks (e.g., Bank of England, European Central Bank, Swiss National Bank) increased
their financial programs directed to alleviating the financial pressure on markets and to providing
financial liquidity to issuers. Namely, the bond purchase programs had aimed to consolidated
market recovery and help to displacing investors toward other financial assets. As a result, prices
recovered and remain close to the high levels of the 2020 second quarter, but not at the same
level before March’s stress situation, especially in 10Y bonds. Additionally, if liquidity provided by
central banks starts to drop off, the market dynamics could adjust to economic performance and
not its financial performance. In other words, the resulting dynamics could explain an increase in
mean correlation in bond dynamics coinciding with the economic dynamics after the pandemic and
the increment in yield rates.

Although we consider the sovereign bond yields with a 10Y maturity as a benchmark, this
research can be extended to sovereign bonds with different maturities (e.g., short term 1Y, 2Y or
5Y, and long term 20Y or 30Y) because these bonds could reveal interesting effects and confirm
that sovereign bonds are a good indicator to identify the economic impact of COVID-19. As each
sovereign bond has the different yield and volatility trends, we considered using the zero-coupon
curve to evaluate the full extent of COVID-19 on sovereign bonds.
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