

Hábitos tróficos de *Carcharhinus porosus, Carcharhinus falciformis* y *Rhizoprionodon porosus* mediante análisis estomacal e isótopos estables, en el Caribe colombiano

Oscar Forero Bastidas^a, Nireth Sierra Sabalza^a, Adolfo Sanjuan Muñoz^a y Carlos Polo Silva^b

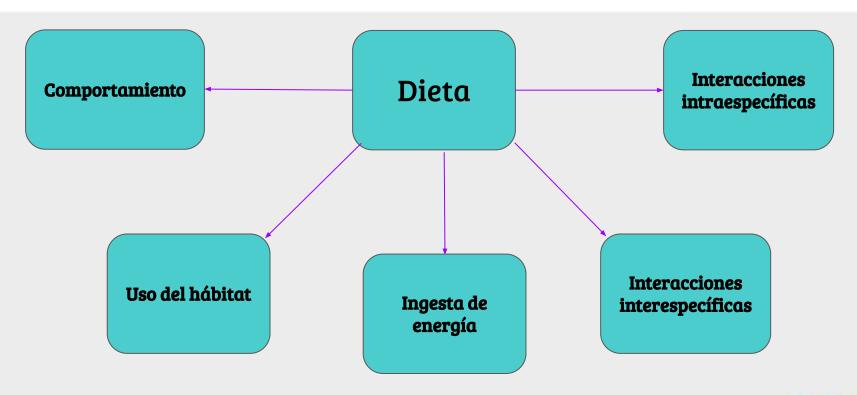
* oscari.forerob@utadeo.edu.co

^a Universidad Jorge Tadeo Lozano. Área de Ciencias Biológicas y Ambientales. Facultad de Ciencias Naturales e Ingeniería, Cra. 2 # 11-68 Santa Marta, Colombia.

^b Coastal Marine Education and Research Academy. Clearwater, FL, USA

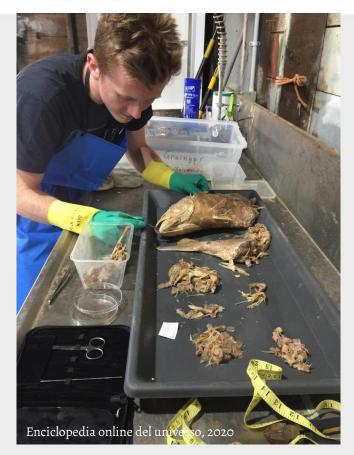
Proyecto de investigación

Caracterización poblacional y ecología trófica de la fauna íctica, pelágica y demersal del Caribe norte de Colombia. Fase I


Convocatoria 17 de 2018. Universidad Jorge Tadeo Lozano

Semillero de Ecología y Biodiversidad Marina (ECOBIOMAR)

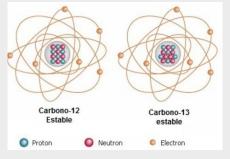
Grupo de Investigación Dinámica y Manejo de Ecosistemas Marino-Costeros (DIMARCO)

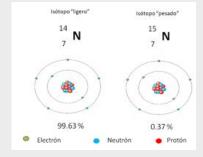


Introducción

Análisis de Contenido Estomacal

Comportamiento alimentario


Valor nutricional de la dieta


Hábitos alimentarios

Análisis de Isótopos Estables

Se basa en la relación entre la concentración de un isótopo pesado sobre uno ligero (δ^{13} C/ δ^{12} C, δ^{15} N/ δ^{14} N)

MNHN, 2020

Junta de Andalucía, 2015

Ventajas:

- Elimina el sesgo de instantánea
- Da mediciones a corto, mediano y largo plazo

Desventajas:

No proporciona información taxonómica

Especies Objetivo


Cazón picudo antillano Rhizoprionodon porosus Poey, 1861

Tiburón poroso Carcharhinus porosus Ranzani, 1840

Tiburón sedoso Carcharhinus falciformis Müller & Henle, 1839

Objetivo General

Evaluar los hábitos tróficos de *Rhizoprionodon porosus, Carcharhinus falciformis* y *Carcharhinus porosus*, por medio del análisis de contenido estomacal e isótopos estables δ^{15} N y δ^{13} C, en hígado y músculo, identificando sus ítems alimenticios, nivel trófico promedio y uso del hábitat.

Objetivos especificos

Determinar los ítems alimentarios de las especies mediante el análisis de contenido estomacal

Estimar el nivel trófico promedio de las especies mediante el análisis de contenido estomacal y razones isotópicas de $\delta^{15}N$

Inferir el área de donde obtienen la fuente de carbono mediante las señales isotópicas de δ¹³C

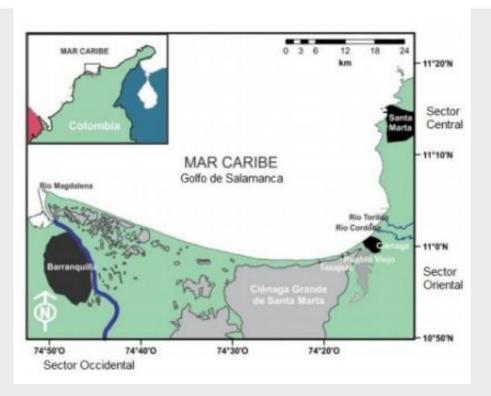
Evaluar el traslapo de nicho isotópico entre las especies capturadas de tiburones

Evidenciar los cambios en las dietas de hembras y machos de cada especie mediante las técnicas empleadas

Hipótesis

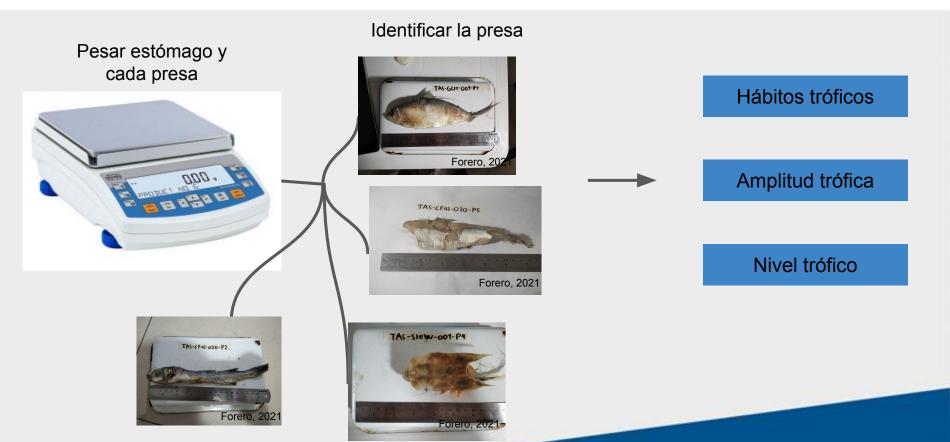
R. porosus, C. falciformis y C. porosus tendrán un consumo mayoritario de peces de la familia Clupeidae, Scombridae y Sciaenidae, respectivamente

El nivel trófico de los tiburones estará entre 3.8 y 4.5


Las especies más grandes, como *C. falciformis*, tenderán a alimentarse en áreas oceánicas mientras que las demás en aguas cercanas a la costa

No habrá un traslapo de nicho significativo debido a las diferentes preferencias alimenticias de cada especie

No existirá una fuerte diferencia en las dietas de hembras y machos de ninguna especie


Área de Estudio

Golfo de Salamanca, Caribe colombiano. Tomado de Fernández, 2016

Metodología Análisis de Contenido Estomacal

Hábitos tróficos

Índice de repleción (Laevastú, 1980)

$$IR = \left(\frac{PC}{PT}\right) * 100$$

Donde,

PC es el peso del contenido estomacal. *PT* es el peso total del pez.

Método de frecuencia (Hyslop, 1980)

$$\%FA = \left(\frac{Ei}{Et}\right) * 100$$

Donde,

Ei es el número de estómagos con la presa i. Et es el número total de estómagos con alimento.

Hábitos tróficos

Método gravimétrico (Hyslop, 1980)

$$\%P = \left(\frac{Pi}{Pt}\right) * 100$$

Donde,

Pi es el peso de la presa i. *Pt* es el peso total de todas las presas.

Método numérico (Hyslop, 1980)

$$\%N = \left(\frac{Ni}{Np}\right) * 100$$

Donde,

Ni es el número de individuos de la presa i. *Np* es el número total de todas las presas.

Hábitos tróficos

Índice de importancia relativa (Hacunda, 1981)

$$IIR = (\%P + \%N) * \%FA$$

Donde,

%N corresponde al método numérico %P corresponde al método gravimétrico %FA corresponde al método de frecuencia

Presas preferenciales o principales

$$\%IIR = \frac{(100 * IIRi)}{\sum_{i=1}^{n} IIR}$$

Presas secundarias

%IIR < 25 %

Presas accidentales u ocasionales

Amplitud trófica

Índice estandarizado de Levin (Krebs, 1999)

$$\beta i = (\frac{1}{n-1})(\frac{1}{\sum Pi^2} - 1)$$

Donde,

Pi es la proporción de la presa i en la dieta del depredador

n es el número de grupos o taxones de presas

$$\beta i > 0.6$$

Especies generalistas

$$\beta i < 0.6$$

Especies especialistas

Traslapo trófico

Índice de traslapo trófico de Morisita-Horn (Morisita, 1959; Horn, 1966)

$$C\lambda = 2 * \frac{\sum (Pxi * Pyi)}{\sum (Pxi^2 + Pyi^2)}$$

Donde,

Pxi es la proporción del ítem i en el total de ítems consumidos por la especie x
Pyi es la proporción del ítem i en el total de ítems consumidos por la especie y

 $C\lambda > 0.6$

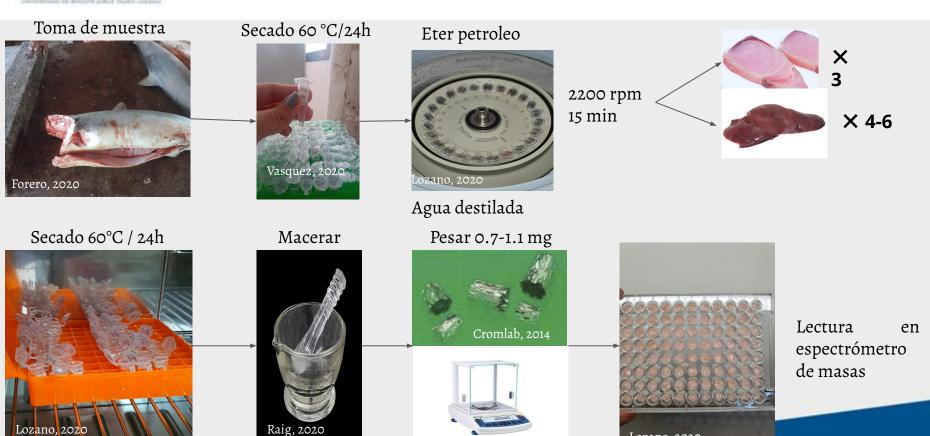
Traslapo trófico significativo

 $C\lambda > 0.6$

Traslapo trófico no significativo

Nivel trófico (Christensen y Pauly, 1992)

$$NT = 1 + (\sum_{j=1}^{n} DCij)(NTj)$$


Donde,

DCij es la proporción de las presas j en la dieta del depredador i.

NTj es el nivel trófico de las presas j.n es el número de grupos o taxones de presas.

Análisis de Isótopos Estables

Biomédicos, 2018

Lozano, 2020

Nivel trófico

COASSIMERS TENTIARY CONSUMERS SECONDARY CONSUMERS PRIMARY PRODUCTES

$$NT = \lambda + \frac{\delta^{15} N_{depredador} - \delta^{15} N_{base}}{\Delta_n}$$

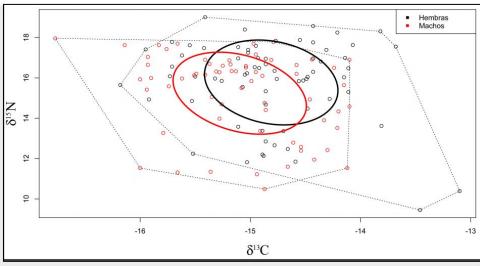
Post, 2002

 $\delta^{15}N$

 λ : Nivel trófico base $\Delta_{\rm n:}$: Enriquecimiento de¹⁵N por nivel trófico

 $\delta^{15}N_{depredador}$: Promedio de $\delta^{15}N$

δ¹⁵N_{base}: Determinación del δ¹⁵N del organismo usado como base


CORDIS, 2015

Uso del hábitat

Estupiñan-Montaño, 2020

Nicho isotópico y traslapo trófico

Nicho isotópico y traslapo trófico para machos y hembras de *P. glauca*. Tomado de Estupiñan-Montaño, 2016.

 $\delta^{13}C$

Bibliografía

- Christensen, V. y D. Pauly. 1992. ECOPATH II a software for balance steady-state ecosystem models y calculating network characteristics. Ecological Modelling, 61: 169-185.
- Estupiñán-Montaño, C. 2016. Ontogenia alimentaria de tres especies de tiburones pelágicos: Alopias pelagicus,
 Carcharhinus falciformis y Prionace glauca en la reserva marina de Galápagos, Ecuador. Tesis Maestría. CICIMAR.
 90 p.
- Fernández, L. 2016. Dieta de Dasyatis guttata (Elasmobranchii: Myliobatiformes) en el golfo de Salamanca, Caribe de Colombia. Una aproximación interanual. Tesis de grado. Biología. Universidad del Magdalena. Santa Marta, 70 p.
- Hacunda, J. 1981. Trophic relationships among demersal fishes in a coastal area of the Gulf of Maine. Fish Bull., 79: 775-788.
- Horn, H. 1966. Measurement of "overlap" in comparative ecological studies. Amer. Naturalist., 100(914): 419-424.
- Hyslop, E. 1980. Stomach contents analysis a review of methods y their application. J. Fish Biol., 17: 411-429.
- Krebs, C. 1999. Ecological methodology. Harper y Row. New York. 654 p.

Bibliografía

- Laevastu, T. 1980. Manual de métodos de biología pesquera. Acribia, España. 244 p.
- Morisita, M. 1959. Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science, Kyushu Univ., Series E (Biology) 3: 65-80.
- Post, D. M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology., 83: 703-718.
- Shiffman, D. S., A. J. Gallagher, M. D. Boyle, C. M. Hammerschlag-Peyer and N. Hammerschlag. 2012. Stable isotope analysis as a tool for elasmobranch conservation research: a primer for non-specialists. Mar. Freshwat. Res: 1-9.
- Wolf, N., Carleton, S. A., y C. Martinez del Rio. 2009. Ten years of experimental animal isotopic ecology. Funct. Ecol., 23. 17–26.
- Zacharia, P., and K. Abdurahiman. 2004. Methods of stomach content analysis of fishes P.U. CMFRI: 148–158.